Preparation and characterization of Cu-doped TiO2 nanomaterials with anatase/rutile/brookite triphasic structure and their photocatalytic activity

نویسندگان

چکیده

Pure TiO2 and Cu–doped containing different amounts of copper ions with anatase/rutile/brookite triphasic structure were successfully synthesized through a simple hydrothermal method. The obtained samples characterized by X–ray diffraction (XRD), Raman spectroscopy, scanning electron microscope (SEM), transmission (TEM), photoelectron spectroscopy (XPS), UV?vis diffuse reflectance (UV-DRS), photoluminescence (PL) Brunauer–Emmett–Teller surface area analyze (BET). Both pure show relatively high photocatalytic activity owing to their considerable areas. Moreover, the three–phase coexisting conversion between Cu2+ Cu+ facilitate separation photogenerated electrons holes, which is favorable for performance. 1%Cu–TiO2 exhibits highest degradation degree rhodamine B (RhB) reaches 93.5% after 30 min, higher than that monophasic/biphasic 1%Cu–TiO2. ·O2? radical main active species, h+ ·OH species are subsidiary in process.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, characterization and photocatalytic activity of B, La co-doped mesoporous TiO2 for methylene blue degradation

Mesoporous titanium dioxide co-doped with boron and lanthanum has been prepared by template method using boric acid triethyl ester, lanthanum nitrate hexahydrate and tetrabutyl titanate as precursors and Pluronic P123 as template. The as-prepared photocatalyst is characterized by thermogravimetric differential thermal analysis, N2 adsorption-desorption measurements, X-ray diffraction, scanning ...

متن کامل

Synthesis, Characterization and Investigation of Photocatalytic Activity of transition metal-doped TiO2 Nanostructures

In this work, M-doped TiO2 nanostructures (M: Fe, Co and Ni) were synthesized by reverse microemulsion method. The as-prepared products were analyzed by different techniques such as scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The effect of various dopants (Fe, Co and Ni) on ba...

متن کامل

Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO2 Nanocomposite Structure

This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p-type NiO film of high concentration in contact with the native n-type TiO₂ film, which resulte...

متن کامل

Preparation, Characterization and Photocatalytic Activity of Ag-Cd-ZnO and Ag-Cu-ZnO Nanostructures

In this study, ZnO nanopowders and ZnO doped with metals (Cu , Ag- doped ZnO) and (Cd, Ag- doped ZnO) were synthesized by the sol-gel method in order to investigation on the codoping effect on the band gap and photocatalytic activity of ZnO. The synthesized samples are characterized by IR spectroscopy technique. Moreover, the absorption coefficients of the ZnO, Ag-Cd-ZnO and Ag-Cu-ZnO were anal...

متن کامل

Preparation, Characterization, and Investigation of Photocatalytic Activity of TiO2/SiO2/Co Nanocomposite Using Additives

Titanium dioxide has been widely used for photo-catalytic and self-cleaning activities. In this study, TiO2 /SiO2 /Co nanocomposite was prepared by sol-gel method in the presence of Polyvinyl Pyrrolidone (PVP), and Hydroxyl Propyl Cellulose (HPC) as additives, and characterized by IR spectra, Scanning Electron Microscopy (SEM), Energy Dispersive Analytical X-Ray (EDAX), and X-Ray Diffraction (X...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Materials Science: Materials in Electronics

سال: 2021

ISSN: ['1573-482X', '0957-4522']

DOI: https://doi.org/10.1007/s10854-021-06660-5